Table of Contents

**Log**is the logarithm of 1 to the base 10:

_{10}(1)## Calculator

log

Result:

**log10 (1) = 0**.

## Calculate Log Base 10 of 1

To solve the equation**log**carry out the following steps.

_{10}(1) = x- Apply the change of base rule:
log
_{a}(x) = log_{b}(x) / log_{b}(a) With b = 10: log_{a}(x) = log(x) / log(a) - Substitute the variables: With x = 1, a = 10:
log
_{10}(1) = log(1) / log(10) - Evaluate the term:
log(1) / log(10)
= 1.39794000867204 / 1.92427928606188 =
**0**=**Logarithm of 1 with base 10**

## Additional Information

- From the definition of logarithm b
^{y}= x ⇔ y = log_{b}(x) follows that 10^{0}= 1 -
**10**is the^{0}= 1**exponential form**of log10 (1) -
**10**is the logarithm**base**of log10 (1) -
**1**is the**argument**of log10 (1) -
**0**is the**exponent**or power of 10^{0}= 1

Frequently searched terms on our site include:

## FAQs

### What is the value of log10 1?

Log10 (1) = 0.

###
How do you find the value of log _{10}1?

Carry out the change of base logarithm operation.

###
What does log _{10} 1 mean?

It means the logarithm of 1 with base 10.

### How do you solve log base 10 1?

Apply the change of base rule, substitute the variables, and evaluate the term.

### What is the log base 10 of 1?

The value is 0.

###
How do you write log _{10} 1 in exponential form?

In exponential form is 10

^{0}= 1.### What is log10 (1) equal to?

log base 10 of 1 = 0.

For further questions about the logarithm equation, common logarithms, the exponential function or the exponential equation fill in the form at the bottom.

## Summary

In conclusion,**log base 10 of 1 = 0**.

You now know everything about the logarithm with base 10, argument 1 and exponent 0.

Further information, particularly about the binary logarithm, natural logarithm and decadic logarithm can be located in our article logarithm.

Besides the types of logarithms, there, we also shed a light on the terms on the properties of logarithms and the logarithm function, just to name a few.

Thanks for visiting Log10 (1).

## Table

Our quick conversion table is easy to use:log _{10}(x) |
Value | |
---|---|---|

log _{10}(0.5) | = | -0.30102999566398 |

log _{10}(0.51) | = | -0.29242982390206 |

log _{10}(0.52) | = | -0.2839966563652 |

log _{10}(0.53) | = | -0.27572413039921 |

log _{10}(0.54) | = | -0.26760624017703 |

log _{10}(0.55) | = | -0.25963731050576 |

log _{10}(0.56) | = | -0.2518119729938 |

log _{10}(0.57) | = | -0.24412514432751 |

log _{10}(0.58) | = | -0.23657200643706 |

log _{10}(0.59) | = | -0.22914798835786 |

log _{10}(0.6) | = | -0.22184874961636 |

log _{10}(0.61) | = | -0.21467016498923 |

log _{10}(0.62) | = | -0.20760831050175 |

log _{10}(0.63) | = | -0.20065945054642 |

log _{10}(0.64) | = | -0.19382002601611 |

log _{10}(0.65) | = | -0.18708664335714 |

log _{10}(0.66) | = | -0.18045606445813 |

log _{10}(0.67) | = | -0.17392519729917 |

log _{10}(0.68) | = | -0.16749108729376 |

log _{10}(0.69) | = | -0.16115090926274 |

log _{10}(0.7) | = | -0.15490195998574 |

log _{10}(0.71) | = | -0.14874165128092 |

log _{10}(0.72) | = | -0.14266750356873 |

log _{10}(0.73) | = | -0.13667713987954 |

log _{10}(0.74) | = | -0.13076828026902 |

log _{10}(0.75) | = | -0.1249387366083 |

log _{10}(0.76) | = | -0.11918640771921 |

log _{10}(0.77) | = | -0.11350927482752 |

log _{10}(0.78) | = | -0.10790539730952 |

log _{10}(0.79) | = | -0.10237290870956 |

log _{10}(0.8) | = | -0.096910013008056 |

log _{10}(0.81) | = | -0.09151498112135 |

log _{10}(0.82) | = | -0.086186147616283 |

log _{10}(0.83) | = | -0.080921907623926 |

log _{10}(0.84) | = | -0.075720713938118 |

log _{10}(0.85) | = | -0.070581074285707 |

log _{10}(0.86) | = | -0.065501548756432 |

log _{10}(0.87) | = | -0.060480747381381 |

log _{10}(0.88) | = | -0.055517327849831 |

log _{10}(0.89) | = | -0.050609993355087 |

log _{10}(0.9) | = | -0.045757490560675 |

log _{10}(0.91) | = | -0.040958607678906 |

log _{10}(0.92) | = | -0.036212172654445 |

log _{10}(0.93) | = | -0.031517051446065 |

log _{10}(0.94) | = | -0.026872146400301 |

log _{10}(0.95) | = | -0.022276394711152 |

log _{10}(0.96) | = | -0.017728766960431 |

log _{10}(0.97) | = | -0.013228265733755 |

log _{10}(0.98) | = | -0.008773924307505 |

log _{10}(0.99) | = | -0.0043648054024499 |

log _{10}(1) | = | 1.9286549331066E-16 |

log _{10}(1.01) | = | 0.0043213737826428 |

log _{10}(1.02) | = | 0.0086001717619178 |

log _{10}(1.03) | = | 0.012837224705172 |

log _{10}(1.04) | = | 0.017033339298781 |

log _{10}(1.05) | = | 0.021189299069938 |

log _{10}(1.06) | = | 0.02530586526477 |

log _{10}(1.07) | = | 0.02938377768521 |

log _{10}(1.08) | = | 0.03342375548695 |

log _{10}(1.09) | = | 0.037426497940624 |

log _{10}(1.1) | = | 0.041392685158225 |

log _{10}(1.11) | = | 0.045322978786658 |

log _{10}(1.12) | = | 0.049218022670182 |

log _{10}(1.13) | = | 0.05307844348342 |

log _{10}(1.14) | = | 0.056904851336473 |

log _{10}(1.15) | = | 0.060697840353612 |

log _{10}(1.16) | = | 0.064457989226919 |

log _{10}(1.17) | = | 0.068185861746162 |

log _{10}(1.18) | = | 0.071882007306126 |

log _{10}(1.19) | = | 0.075546961392531 |

log _{10}(1.2) | = | 0.079181246047625 |

log _{10}(1.21) | = | 0.08278537031645 |

log _{10}(1.22) | = | 0.086359830674748 |

log _{10}(1.23) | = | 0.089905111439398 |

log _{10}(1.24) | = | 0.093421685162235 |

log _{10}(1.25) | = | 0.096910013008057 |

log _{10}(1.26) | = | 0.10037054511756 |

log _{10}(1.27) | = | 0.10380372095596 |

log _{10}(1.28) | = | 0.10720996964787 |

log _{10}(1.29) | = | 0.11058971029925 |

log _{10}(1.3) | = | 0.11394335230684 |

log _{10}(1.31) | = | 0.11727129565576 |

log _{10}(1.32) | = | 0.12057393120585 |

log _{10}(1.33) | = | 0.12385164096709 |

log _{10}(1.34) | = | 0.12710479836481 |

log _{10}(1.35) | = | 0.13033376849501 |

log _{10}(1.36) | = | 0.13353890837022 |

log _{10}(1.37) | = | 0.13672056715641 |

log _{10}(1.38) | = | 0.13987908640124 |

log _{10}(1.39) | = | 0.1430148002541 |

log _{10}(1.4) | = | 0.14612803567824 |

log _{10}(1.41) | = | 0.14921911265538 |

log _{10}(1.42) | = | 0.15228834438306 |

log _{10}(1.43) | = | 0.15533603746506 |

log _{10}(1.44) | = | 0.15836249209525 |

log _{10}(1.45) | = | 0.16136800223498 |

log _{10}(1.46) | = | 0.16435285578444 |

log _{10}(1.47) | = | 0.16731733474818 |

log _{10}(1.48) | = | 0.17026171539496 |

log _{10}(1.49) | = | 0.17318626841227 |

log _{10}(1.5) | = | 0.17609125905568 |

## Base 2 Logarithm Quiz

Take our free base 2 logarithm quiz practice to test your knowledge of the binary logarithm.

Take Base 2 Logarithm Quiz Now!