Home » Logarithms of 81 » Log81 (3)

# Log 81 (3)

Log 81 (3) is the logarithm of 3 to the base 81:

## Calculator

log

Result:
As you can see in our log calculator, log81 (3) = 0.25.

## Calculate Log Base 81 of 3

To solve the equation log 81 (3) = x carry out the following steps.
1. Apply the change of base rule:
log a (x) = log b (x) / log b (a)
With b = 10:
log a (x) = log(x) / log(a)
2. Substitute the variables:
With x = 3, a = 81:
log 81 (3) = log(3) / log(81)
3. Evaluate the term:
log(3) / log(81)
= 1.39794000867204 / 1.92427928606188
= 0.25
= Logarithm of 3 with base 81
Here’s the logarithm of 81 to the base 3.

• From the definition of logarithm b y = x ⇔ y = log b(x) follows that 81 0.25 = 3
• 81 0.25 = 3 is the exponential form of log81 (3)
• 81 is the logarithm base of log81 (3)
• 3 is the argument of log81 (3)
• 0.25 is the exponent or power of 81 0.25 = 3
BTW: Logarithmic equations have many uses in various contexts in science.

Frequently searched terms on our site include:

## FAQs

### What is the value of log81 3?

Log81 (3) = 0.25.

### How do you find the value of log 813?

Carry out the change of base logarithm operation.

### What does log 81 3 mean?

It means the logarithm of 3 with base 81.

### How do you solve log base 81 3?

Apply the change of base rule, substitute the variables, and evaluate the term.

### What is the log base 81 of 3?

The value is 0.25.

### How do you write log 81 3 in exponential form?

In exponential form is 81 0.25 = 3.

### What is log81 (3) equal to?

log base 81 of 3 = 0.25.

For further questions about the logarithm equation, common logarithms, the exponential function or the exponential equation fill in the form at the bottom.

## Summary

In conclusion, log base 81 of 3 = 0.25.

You now know everything about the logarithm with base 81, argument 3 and exponent 0.25.
Further information, particularly about the binary logarithm, natural logarithm and decadic logarithm can be located in our article logarithm.

Besides the types of logarithms, there, we also shed a light on the terms on the properties of logarithms and the logarithm function, just to name a few.
Thanks for visiting Log81 (3).

## Table

Our quick conversion table is easy to use:
log 81(x) Value
log 81(2.5)=0.20851094178662
log 81(2.51)=0.20941936537488
log 81(2.52)=0.21032417693139
log 81(2.53)=0.21122540506641
log 81(2.54)=0.21212307805162
log 81(2.55)=0.21301722382543
log 81(2.56)=0.21390786999822
log 81(2.57)=0.21479504385743
log 81(2.58)=0.21567877237259
log 81(2.59)=0.21655908220023
log 81(2.6)=0.21743599968872
log 81(2.61)=0.21830955088297
log 81(2.62)=0.21917976152913
log 81(2.63)=0.22004665707908
log 81(2.64)=0.22091026269494
log 81(2.65)=0.22177060325341
log 81(2.66)=0.22262770335012
log 81(2.67)=0.22348158730383
log 81(2.68)=0.22433227916054
log 81(2.69)=0.22517980269759
log 81(2.7)=0.22602418142765
log 81(2.71)=0.2268654386026
log 81(2.72)=0.22770359721741
log 81(2.73)=0.22853868001386
log 81(2.74)=0.22937070948432
log 81(2.75)=0.23019970787531
log 81(2.76)=0.2310256971911
log 81(2.77)=0.23184869919725
log 81(2.78)=0.23266873542396
log 81(2.79)=0.23348582716956
log 81(2.8)=0.23429999550374
log 81(2.81)=0.23511126127085
log 81(2.82)=0.23591964509311
log 81(2.83)=0.23672516737372
log 81(2.84)=0.2375278483
log 81(2.85)=0.23832770784638
log 81(2.86)=0.2391247657774
log 81(2.87)=0.23991904165065
log 81(2.88)=0.24071055481963
log 81(2.89)=0.24149932443659
log 81(2.9)=0.24228536945532
log 81(2.91)=0.24306870863386
log 81(2.92)=0.24384936053722
log 81(2.93)=0.24462734353997
log 81(2.94)=0.24540267582888
log 81(2.95)=0.24617537540547
log 81(2.96)=0.24694546008847
log 81(2.97)=0.24771294751634
log 81(2.98)=0.24847785514967
log 81(2.99)=0.24924020027357
log 81(3)=0.25
log 81(3.01)=0.25075727127008
log 81(3.02)=0.25151203085638
log 81(3.03)=0.25226429536512
log 81(3.04)=0.25301408123836
log 81(3.05)=0.25376140475619
log 81(3.06)=0.25450628203881
log 81(3.07)=0.25524872904866
log 81(3.08)=0.25598876159243
log 81(3.09)=0.25672639532309
log 81(3.1)=0.25746164574191
log 81(3.11)=0.25819452820036
log 81(3.12)=0.2589250579021
log 81(3.13)=0.25965324990479
log 81(3.14)=0.26037911912203
log 81(3.15)=0.26110268032514
log 81(3.16)=0.261823948145
log 81(3.17)=0.2625429370738
log 81(3.18)=0.26325966146679
log 81(3.19)=0.26397413554401
log 81(3.2)=0.26468637339197
log 81(3.21)=0.26539638896535
log 81(3.22)=0.26610419608859
log 81(3.23)=0.26680980845754
log 81(3.24)=0.26751323964104
log 81(3.25)=0.26821450308247
log 81(3.26)=0.26891361210133
log 81(3.27)=0.26961057989473
log 81(3.28)=0.27030541953889
log 81(3.29)=0.2709981439906
log 81(3.3)=0.27168876608869
log 81(3.31)=0.27237729855545
log 81(3.32)=0.27306375399805
log 81(3.33)=0.27374814490987
log 81(3.34)=0.27443048367196
log 81(3.35)=0.27511078255429
log 81(3.36)=0.27578905371712
log 81(3.37)=0.2764653092123
log 81(3.38)=0.27713956098457
log 81(3.39)=0.27781182087277
log 81(3.4)=0.27848210061116
log 81(3.41)=0.27915041183059
log 81(3.42)=0.27981676605976
log 81(3.43)=0.28048117472637
log 81(3.44)=0.28114364915832
log 81(3.45)=0.28180420058486
log 81(3.46)=0.28246284013773
log 81(3.47)=0.28311957885231
log 81(3.48)=0.2837744276687
log 81(3.49)=0.28442739743282
log 81(3.5)=0.28507849889749
log 81(3.51)=0.2857277427235
Scroll to Top