Table of Contents
Calculator
log
Result:
Calculate Log Base 60 of 2
To solve the equation log 60 (2) = x carry out the following steps.- Apply the change of base rule: log a (x) = log b (x) / log b (a) With b = 10: log a (x) = log(x) / log(a)
- Substitute the variables: With x = 2, a = 60: log 60 (2) = log(2) / log(60)
- Evaluate the term: log(2) / log(60) = 1.39794000867204 / 1.92427928606188 = 0.16929380759878 = Logarithm of 2 with base 60
Additional Information
- From the definition of logarithm b y = x ⇔ y = log b(x) follows that 60 0.16929380759878 = 2
- 60 0.16929380759878 = 2 is the exponential form of log60 (2)
- 60 is the logarithm base of log60 (2)
- 2 is the argument of log60 (2)
- 0.16929380759878 is the exponent or power of 60 0.16929380759878 = 2
Frequently searched terms on our site include:
FAQs
What is the value of log60 2?
Log60 (2) = 0.16929380759878.
How do you find the value of log 602?
Carry out the change of base logarithm operation.
What does log 60 2 mean?
It means the logarithm of 2 with base 60.
How do you solve log base 60 2?
Apply the change of base rule, substitute the variables, and evaluate the term.
What is the log base 60 of 2?
The value is 0.16929380759878.
How do you write log 60 2 in exponential form?
In exponential form is 60 0.16929380759878 = 2.
What is log60 (2) equal to?
log base 60 of 2 = 0.16929380759878.
For further questions about the logarithm equation, common logarithms, the exponential function or the exponential equation fill in the form at the bottom.
Summary
In conclusion, log base 60 of 2 = 0.16929380759878.You now know everything about the logarithm with base 60, argument 2 and exponent 0.16929380759878.
Further information, particularly about the binary logarithm, natural logarithm and decadic logarithm can be located in our article logarithm.
Besides the types of logarithms, there, we also shed a light on the terms on the properties of logarithms and the logarithm function, just to name a few.
Thanks for visiting Log60 (2).
Table
Our quick conversion table is easy to use:log 60(x) | Value | |
---|---|---|
log 60(1.5) | = | 0.099030529049589 |
log 60(1.51) | = | 0.10065338775571 |
log 60(1.52) | = | 0.10226553444514 |
log 60(1.53) | = | 0.10386710960485 |
log 60(1.54) | = | 0.10545825097612 |
log 60(1.55) | = | 0.1070390936256 |
log 60(1.56) | = | 0.10860977001411 |
log 60(1.57) | = | 0.11017041006324 |
log 60(1.58) | = | 0.11172114121988 |
log 60(1.59) | = | 0.11326208851862 |
log 60(1.6) | = | 0.11479337464228 |
log 60(1.61) | = | 0.1163151199805 |
log 60(1.62) | = | 0.11782744268657 |
log 60(1.63) | = | 0.11933045873245 |
log 60(1.64) | = | 0.12082428196215 |
log 60(1.65) | = | 0.12230902414347 |
log 60(1.66) | = | 0.12378479501818 |
log 60(1.67) | = | 0.1252517023507 |
log 60(1.68) | = | 0.12670985197533 |
log 60(1.69) | = | 0.12815934784204 |
log 60(1.7) | = | 0.12960029206096 |
log 60(1.71) | = | 0.13103278494553 |
log 60(1.72) | = | 0.13245692505445 |
log 60(1.73) | = | 0.13387280923231 |
log 60(1.74) | = | 0.13528053264912 |
log 60(1.75) | = | 0.13668018883875 |
log 60(1.76) | = | 0.13807186973615 |
log 60(1.77) | = | 0.13945566571365 |
log 60(1.78) | = | 0.14083166561611 |
log 60(1.79) | = | 0.1421999567952 |
log 60(1.8) | = | 0.14356062514268 |
log 60(1.81) | = | 0.14491375512268 |
log 60(1.82) | = | 0.14625942980327 |
log 60(1.83) | = | 0.14759773088696 |
log 60(1.84) | = | 0.14892873874053 |
log 60(1.85) | = | 0.15025253242398 |
log 60(1.86) | = | 0.15156918971869 |
log 60(1.87) | = | 0.15287878715483 |
log 60(1.88) | = | 0.15418140003812 |
log 60(1.89) | = | 0.15547710247573 |
log 60(1.9) | = | 0.15676596740164 |
log 60(1.91) | = | 0.15804806660125 |
log 60(1.92) | = | 0.15932347073536 |
log 60(1.93) | = | 0.16059224936358 |
log 60(1.94) | = | 0.16185447096704 |
log 60(1.95) | = | 0.16311020297061 |
log 60(1.96) | = | 0.16435951176449 |
log 60(1.97) | = | 0.16560246272529 |
log 60(1.98) | = | 0.16683912023655 |
log 60(1.99) | = | 0.16806954770874 |
log 60(2) | = | 0.16929380759878 |
log 60(2.01) | = | 0.17051196142908 |
log 60(2.02) | = | 0.17172406980607 |
log 60(2.03) | = | 0.17293019243828 |
log 60(2.04) | = | 0.17413038815404 |
log 60(2.05) | = | 0.17532471491865 |
log 60(2.06) | = | 0.17651322985119 |
log 60(2.07) | = | 0.17769598924093 |
log 60(2.08) | = | 0.1788730485633 |
log 60(2.09) | = | 0.18004446249552 |
log 60(2.1) | = | 0.18121028493184 |
log 60(2.11) | = | 0.18237056899841 |
log 60(2.12) | = | 0.18352536706781 |
log 60(2.13) | = | 0.18467473077326 |
log 60(2.14) | = | 0.18581871102242 |
log 60(2.15) | = | 0.18695735801096 |
log 60(2.16) | = | 0.18809072123576 |
log 60(2.17) | = | 0.18921884950784 |
log 60(2.18) | = | 0.19034179096496 |
log 60(2.19) | = | 0.19145959308392 |
log 60(2.2) | = | 0.19257230269266 |
log 60(2.21) | = | 0.19367996598197 |
log 60(2.22) | = | 0.19478262851707 |
log 60(2.23) | = | 0.19588033524877 |
log 60(2.24) | = | 0.19697313052452 |
log 60(2.25) | = | 0.19806105809918 |
log 60(2.26) | = | 0.19914416114546 |
log 60(2.27) | = | 0.20022248226427 |
log 60(2.28) | = | 0.20129606349473 |
log 60(2.29) | = | 0.20236494632403 |
log 60(2.3) | = | 0.20342917169704 |
log 60(2.31) | = | 0.20448878002571 |
log 60(2.32) | = | 0.20554381119831 |
log 60(2.33) | = | 0.20659430458841 |
log 60(2.34) | = | 0.20764029906369 |
log 60(2.35) | = | 0.20868183299462 |
log 60(2.36) | = | 0.20971894426284 |
log 60(2.37) | = | 0.21075167026947 |
log 60(2.38) | = | 0.2117800479432 |
log 60(2.39) | = | 0.2128041137482 |
log 60(2.4) | = | 0.21382390369187 |
log 60(2.41) | = | 0.21483945333247 |
log 60(2.42) | = | 0.21585079778653 |
log 60(2.43) | = | 0.21685797173616 |
log 60(2.44) | = | 0.21786100943615 |
log 60(2.45) | = | 0.21885994472099 |
log 60(2.46) | = | 0.21985481101174 |
log 60(2.47) | = | 0.22084564132266 |
log 60(2.48) | = | 0.22183246826788 |
log 60(2.49) | = | 0.22281532406777 |
log 60(2.5) | = | 0.22379424055528 |
log 60(2.51) | = | 0.22476924918215 |