Home » Logarithms of 3 » Log3 (33)

Log 3 (33)

Log 3 (33) is the logarithm of 33 to the base 3:

Calculator

log

Result:
Simply the Best Logarithm Calculator! Click To Tweet As you can see in our log calculator, log3 (33) = 3.1826583386441.

Calculate Log Base 3 of 33

To solve the equation log 3 (33) = x carry out the following steps.
  1. Apply the change of base rule:
    log a (x) = log b (x) / log b (a)
    With b = 10:
    log a (x) = log(x) / log(a)
  2. Substitute the variables:
    With x = 33, a = 3:
    log 3 (33) = log(33) / log(3)
  3. Evaluate the term:
    log(33) / log(3)
    = 1.39794000867204 / 1.92427928606188
    = 3.1826583386441
    = Logarithm of 33 with base 3
Here’s the logarithm of 3 to the base 33.

Additional Information

  • From the definition of logarithm b y = x ⇔ y = log b(x) follows that 3 3.1826583386441 = 33
  • 3 3.1826583386441 = 33 is the exponential form of log3 (33)
  • 3 is the logarithm base of log3 (33)
  • 33 is the argument of log3 (33)
  • 3.1826583386441 is the exponent or power of 3 3.1826583386441 = 33
BTW: Logarithmic equations have many uses in various contexts in science.

Frequently searched terms on our site include:

FAQs

What is the value of log3 33?

Log3 (33) = 3.1826583386441.

How do you find the value of log 333?

Carry out the change of base logarithm operation.

What does log 3 33 mean?

It means the logarithm of 33 with base 3.

How do you solve log base 3 33?

Apply the change of base rule, substitute the variables, and evaluate the term.

What is the log base 3 of 33?

The value is 3.1826583386441.

How do you write log 3 33 in exponential form?

In exponential form is 3 3.1826583386441 = 33.

What is log3 (33) equal to?

log base 3 of 33 = 3.1826583386441.

For further questions about the logarithm equation, common logarithms, the exponential function or the exponential equation fill in the form at the bottom.

Summary

In conclusion, log base 3 of 33 = 3.1826583386441.

You now know everything about the logarithm with base 3, argument 33 and exponent 3.1826583386441.
Further information, particularly about the binary logarithm, natural logarithm and decadic logarithm can be located in our article logarithm.

Besides the types of logarithms, there, we also shed a light on the terms on the properties of logarithms and the logarithm function, just to name a few.
Thanks for visiting Log3 (33).

Table

Our quick conversion table is easy to use:
log 3(x) Value
log 3(32.5)=3.1687612866193
log 3(32.51)=3.169041317148
log 3(32.52)=3.1693212615533
log 3(32.53)=3.1696011198881
log 3(32.54)=3.1698808922052
log 3(32.55)=3.1701605785576
log 3(32.56)=3.170440178998
log 3(32.57)=3.1707196935792
log 3(32.58)=3.170999122354
log 3(32.59)=3.171278465375
log 3(32.6)=3.1715577226947
log 3(32.61)=3.1718368943659
log 3(32.62)=3.1721159804409
log 3(32.63)=3.1723949809723
log 3(32.64)=3.1726738960125
log 3(32.65)=3.1729527256139
log 3(32.66)=3.1732314698288
log 3(32.67)=3.1735101287095
log 3(32.68)=3.1737887023082
log 3(32.69)=3.1740671906771
log 3(32.7)=3.1743455938683
log 3(32.71)=3.174623911934
log 3(32.72)=3.1749021449261
log 3(32.73)=3.1751802928967
log 3(32.74)=3.1754583558976
log 3(32.75)=3.1757363339809
log 3(32.76)=3.1760142271984
log 3(32.77)=3.1762920356017
log 3(32.78)=3.1765697592428
log 3(32.79)=3.1768473981734
log 3(32.8)=3.1771249524449
log 3(32.81)=3.1774024221092
log 3(32.82)=3.1776798072178
log 3(32.83)=3.1779571078221
log 3(32.84)=3.1782343239736
log 3(32.85)=3.1785114557239
log 3(32.86)=3.1787885031242
log 3(32.87)=3.1790654662258
log 3(32.88)=3.1793423450802
log 3(32.89)=3.1796191397384
log 3(32.9)=3.1798958502518
log 3(32.91)=3.1801724766714
log 3(32.92)=3.1804490190483
log 3(32.93)=3.1807254774336
log 3(32.94)=3.1810018518783
log 3(32.95)=3.1812781424333
log 3(32.96)=3.1815543491496
log 3(32.97)=3.1818304720781
log 3(32.98)=3.1821065112695
log 3(32.99)=3.1823824667746
log 3(33)=3.1826583386441
log 3(33.01)=3.1829341269288
log 3(33.02)=3.1832098316793
log 3(33.03)=3.1834854529461
log 3(33.04)=3.1837609907797
log 3(33.05)=3.1840364452308
log 3(33.06)=3.1843118163497
log 3(33.07)=3.1845871041869
log 3(33.08)=3.1848623087926
log 3(33.09)=3.1851374302173
log 3(33.1)=3.1854124685112
log 3(33.11)=3.1856874237245
log 3(33.12)=3.1859622959073
log 3(33.13)=3.1862370851099
log 3(33.14)=3.1865117913823
log 3(33.15)=3.1867864147745
log 3(33.16)=3.1870609553366
log 3(33.17)=3.1873354131184
log 3(33.18)=3.18760978817
log 3(33.19)=3.1878840805411
log 3(33.2)=3.1881582902816
log 3(33.21)=3.1884324174412
log 3(33.22)=3.1887064620697
log 3(33.23)=3.1889804242167
log 3(33.24)=3.1892543039319
log 3(33.25)=3.1895281012649
log 3(33.26)=3.1898018162652
log 3(33.27)=3.1900754489823
log 3(33.28)=3.1903489994657
log 3(33.29)=3.1906224677648
log 3(33.3)=3.1908958539289
log 3(33.31)=3.1911691580074
log 3(33.32)=3.1914423800496
log 3(33.33)=3.1917155201046
log 3(33.34)=3.1919885782217
log 3(33.35)=3.1922615544501
log 3(33.36)=3.1925344488388
log 3(33.37)=3.1928072614368
log 3(33.38)=3.1930799922933
log 3(33.39)=3.1933526414571
log 3(33.4)=3.1936252089772
log 3(33.41)=3.1938976949025
log 3(33.42)=3.1941700992818
log 3(33.43)=3.1944424221639
log 3(33.44)=3.1947146635976
log 3(33.45)=3.1949868236315
log 3(33.46)=3.1952589023143
log 3(33.47)=3.1955308996947
log 3(33.48)=3.1958028158212
log 3(33.49)=3.1960746507423
log 3(33.5)=3.1963464045065
log 3(33.51)=3.1966180771624
Scroll to Top