Home » Logarithms of 3 » Log3 (27)

# Log 3 (27)

Log 3 (27) is the logarithm of 27 to the base 3:

## Calculator

log

Result:
As you can see in our log calculator, log3 (27) = 3.

## Calculate Log Base 3 of 27

To solve the equation log 3 (27) = x carry out the following steps.
1. Apply the change of base rule:
log a (x) = log b (x) / log b (a)
With b = 10:
log a (x) = log(x) / log(a)
2. Substitute the variables:
With x = 27, a = 3:
log 3 (27) = log(27) / log(3)
3. Evaluate the term:
log(27) / log(3)
= 1.39794000867204 / 1.92427928606188
= 3
= Logarithm of 27 with base 3
Here’s the logarithm of 3 to the base 27.

• From the definition of logarithm b y = x ⇔ y = log b(x) follows that 3 3 = 27
• 3 3 = 27 is the exponential form of log3 (27)
• 3 is the logarithm base of log3 (27)
• 27 is the argument of log3 (27)
• 3 is the exponent or power of 3 3 = 27
BTW: Logarithmic equations have many uses in various contexts in science.

Frequently searched terms on our site include:

## FAQs

Log3 (27) = 3.

### How do you find the value of log 327?

Carry out the change of base logarithm operation.

### What does log 3 27 mean?

It means the logarithm of 27 with base 3.

### How do you solve log base 3 27?

Apply the change of base rule, substitute the variables, and evaluate the term.

The value is 3.

### How do you write log 3 27 in exponential form?

In exponential form is 3 3 = 27.

### What is log3 (27) equal to?

log base 3 of 27 = 3.

For further questions about the logarithm equation, common logarithms, the exponential function or the exponential equation fill in the form at the bottom.

## Summary

In conclusion, log base 3 of 27 = 3.

You now know everything about the logarithm with base 3, argument 27 and exponent 3.
Further information, particularly about the binary logarithm, natural logarithm and decadic logarithm can be located in our article logarithm.

Besides the types of logarithms, there, we also shed a light on the terms on the properties of logarithms and the logarithm function, just to name a few.
Thanks for visiting Log3 (27).

## Table

Our quick conversion table is easy to use:
log 3(x) Value
log 3(26.5)=2.982985687303
log 3(26.51)=2.9833291090112
log 3(26.52)=2.9836724011995
log 3(26.53)=2.9840155639657
log 3(26.54)=2.9843585974074
log 3(26.55)=2.9847015016219
log 3(26.56)=2.9850442767066
log 3(26.57)=2.9853869227586
log 3(26.58)=2.9857294398752
log 3(26.59)=2.9860718281534
log 3(26.6)=2.9864140876899
log 3(26.61)=2.9867562185816
log 3(26.62)=2.9870982209251
log 3(26.63)=2.9874400948171
log 3(26.64)=2.9877818403539
log 3(26.65)=2.9881234576319
log 3(26.66)=2.9884649467474
log 3(26.67)=2.9888063077964
log 3(26.68)=2.9891475408751
log 3(26.69)=2.9894886460792
log 3(26.7)=2.9898296235047
log 3(26.71)=2.9901704732472
log 3(26.72)=2.9905111954022
log 3(26.73)=2.9908517900654
log 3(26.74)=2.991192257332
log 3(26.75)=2.9915325972973
log 3(26.76)=2.9918728100565
log 3(26.77)=2.9922128957046
log 3(26.78)=2.9925528543366
log 3(26.79)=2.9928926860473
log 3(26.8)=2.9932323909315
log 3(26.81)=2.9935719690838
log 3(26.82)=2.9939114205987
log 3(26.83)=2.9942507455706
log 3(26.84)=2.9945899440939
log 3(26.85)=2.9949290162627
log 3(26.86)=2.9952679621711
log 3(26.87)=2.9956067819132
log 3(26.88)=2.9959454755829
log 3(26.89)=2.9962840432738
log 3(26.9)=2.9966224850798
log 3(26.91)=2.9969608010943
log 3(26.92)=2.9972989914109
log 3(26.93)=2.9976370561229
log 3(26.94)=2.9979749953236
log 3(26.95)=2.9983128091061
log 3(26.96)=2.9986504975636
log 3(26.97)=2.9989880607889
log 3(26.98)=2.9993254988749
log 3(26.99)=2.9996628119144
log 3(27)=3
log 3(27.01)=3.0003370632242
log 3(27.02)=3.0006740016795
log 3(27.03)=3.0010108154583
log 3(27.04)=3.0013475046526
log 3(27.05)=3.0016840693548
log 3(27.06)=3.0020205096568
log 3(27.07)=3.0023568256505
log 3(27.08)=3.0026930174278
log 3(27.09)=3.0030290850803
log 3(27.1)=3.0033650286998
log 3(27.11)=3.0037008483777
log 3(27.12)=3.0040365442055
log 3(27.13)=3.0043721162744
log 3(27.14)=3.0047075646757
log 3(27.15)=3.0050428895005
log 3(27.16)=3.0053780908398
log 3(27.17)=3.0057131687845
log 3(27.18)=3.0060481234255
log 3(27.19)=3.0063829548535
log 3(27.2)=3.006717663159
log 3(27.21)=3.0070522484326
log 3(27.22)=3.0073867107648
log 3(27.23)=3.0077210502457
log 3(27.24)=3.0080552669657
log 3(27.25)=3.0083893610148
log 3(27.26)=3.0087233324831
log 3(27.27)=3.0090571814605
log 3(27.28)=3.0093909080368
log 3(27.29)=3.0097245123017
log 3(27.3)=3.0100579943448
log 3(27.31)=3.0103913542558
log 3(27.32)=3.0107245921239
log 3(27.33)=3.0110577080385
log 3(27.34)=3.011390702089
log 3(27.35)=3.0117235743642
log 3(27.36)=3.0120563249534
log 3(27.37)=3.0123889539455
log 3(27.38)=3.0127214614292
log 3(27.39)=3.0130538474934
log 3(27.4)=3.0133861122267
log 3(27.41)=3.0137182557175
log 3(27.42)=3.0140502780545
log 3(27.43)=3.0143821793258
log 3(27.44)=3.0147139596199
log 3(27.45)=3.0150456190248
log 3(27.46)=3.0153771576285
log 3(27.47)=3.0157085755192
log 3(27.48)=3.0160398727846
log 3(27.49)=3.0163710495125
log 3(27.5)=3.0167021057906
Scroll to Top