Home » Logarithms of 3 » Log3 (27)

Log3 (27)

  • by
Log3 (27) is the logarithm of 27 to the base 3:

Calculator

log

Result:
Simply the Best Logarithm Calculator! Click To TweetAs you can see in our log calculator, log3 (27) = 3.

Calculate Log Base 3 of 27

To solve the equation log3 (27) = x carry out the following steps.
  1. Apply the change of base rule:
    loga (x) = logb (x) / logb (a)
    With b = 10:
    loga (x) = log(x) / log(a)
  2. Substitute the variables:
    With x = 27, a = 3:
    log3 (27) = log(27) / log(3)
  3. Evaluate the term:
    log(27) / log(3)
    = 1.43136376415899 / 0.477121254719662
    = 3
    = Logarithm of 27 with base 3
Here’s the logarithm of 3 to the base 27.

Additional Information

  • From the definition of logarithm by = x ⇔ y = logb(x) follows that 33 = 27
  • 33 = 27 is the exponential form of log3 (27)
  • 3 is the logarithm base of log3 (27)
  • 27 is the argument of log3 (27)
  • 3 is the exponent or power of 33 = 27
BTW: Logarithmic equations have many uses in various contexts in science.

Frequently searched terms on our site include:

FAQs

What is the value of log3 27?

Log3 (27) = 3.

How do you find the value of log327?

Carry out the change of base logarithm operation.

What does log3 27 mean?

It means the logarithm of 27 with base 3.

How do you solve log base 3 27?

Apply the change of base rule, substitute the variables, and evaluate the term.

What is the log base 3 of 27?

The value is 3.

How do you write log3 27 in exponential form?

In exponential form is 33 = 27.

What is log3 (27) equal to?

log base 3 of 27 = 3.

For further questions about the logarithm equation, common logarithms, the exponential function or the exponential equation fill in the form at the bottom.

Summary

In conclusion, log base 3 of 27 = 3.

You now know everything about the logarithm with base 3, argument 27 and exponent 3.
Further information, particularly about the binary logarithm, natural logarithm and decadic logarithm can be located in our article logarithm.

Besides the types of logarithms, there, we also shed a light on the terms on the properties of logarithms and the logarithm function, just to name a few.

If you have not already done so, please hit the share buttons, and install our PWA app (see menu or sidebar).

Thanks for visiting Log3 (27).

Table

Our quick conversion table is easy to use:
log3(x)Value
log3(26.5)=2.9829856873
log3(26.51)=2.983329109
log3(26.52)=2.9836724012
log3(26.53)=2.984015564
log3(26.54)=2.9843585974
log3(26.55)=2.9847015016
log3(26.56)=2.9850442767
log3(26.57)=2.9853869228
log3(26.58)=2.9857294399
log3(26.59)=2.9860718282
log3(26.6)=2.9864140877
log3(26.61)=2.9867562186
log3(26.62)=2.9870982209
log3(26.63)=2.9874400948
log3(26.64)=2.9877818404
log3(26.65)=2.9881234576
log3(26.66)=2.9884649467
log3(26.67)=2.9888063078
log3(26.68)=2.9891475409
log3(26.69)=2.9894886461
log3(26.7)=2.9898296235
log3(26.71)=2.9901704732
log3(26.72)=2.9905111954
log3(26.73)=2.9908517901
log3(26.74)=2.9911922573
log3(26.75)=2.9915325973
log3(26.76)=2.9918728101
log3(26.77)=2.9922128957
log3(26.78)=2.9925528543
log3(26.79)=2.992892686
log3(26.8)=2.9932323909
log3(26.81)=2.9935719691
log3(26.82)=2.9939114206
log3(26.83)=2.9942507456
log3(26.84)=2.9945899441
log3(26.85)=2.9949290163
log3(26.86)=2.9952679622
log3(26.87)=2.9956067819
log3(26.88)=2.9959454756
log3(26.89)=2.9962840433
log3(26.9)=2.9966224851
log3(26.91)=2.9969608011
log3(26.92)=2.9972989914
log3(26.93)=2.9976370561
log3(26.94)=2.9979749953
log3(26.95)=2.9983128091
log3(26.96)=2.9986504976
log3(26.97)=2.9989880608
log3(26.98)=2.9993254989
log3(26.99)=2.9996628119
log3(27)=3
log3(27.01)=3.0003370632
log3(27.02)=3.0006740017
log3(27.03)=3.0010108155
log3(27.04)=3.0013475047
log3(27.05)=3.0016840694
log3(27.06)=3.0020205097
log3(27.07)=3.0023568257
log3(27.08)=3.0026930174
log3(27.09)=3.0030290851
log3(27.1)=3.0033650287
log3(27.11)=3.0037008484
log3(27.12)=3.0040365442
log3(27.13)=3.0043721163
log3(27.14)=3.0047075647
log3(27.15)=3.0050428895
log3(27.16)=3.0053780908
log3(27.17)=3.0057131688
log3(27.18)=3.0060481234
log3(27.19)=3.0063829549
log3(27.2)=3.0067176632
log3(27.21)=3.0070522484
log3(27.22)=3.0073867108
log3(27.23)=3.0077210502
log3(27.24)=3.008055267
log3(27.25)=3.008389361
log3(27.26)=3.0087233325
log3(27.27)=3.0090571815
log3(27.28)=3.009390908
log3(27.29)=3.0097245123
log3(27.3)=3.0100579943
log3(27.31)=3.0103913543
log3(27.32)=3.0107245921
log3(27.33)=3.011057708
log3(27.34)=3.0113907021
log3(27.35)=3.0117235744
log3(27.36)=3.012056325
log3(27.37)=3.0123889539
log3(27.38)=3.0127214614
log3(27.39)=3.0130538475
log3(27.4)=3.0133861122
log3(27.41)=3.0137182557
log3(27.42)=3.0140502781
log3(27.43)=3.0143821793
log3(27.44)=3.0147139596
log3(27.45)=3.015045619
log3(27.46)=3.0153771576
log3(27.47)=3.0157085755
log3(27.48)=3.0160398728
log3(27.49)=3.0163710495
log3(27.5)=3.0167021058