Home » Logarithms of 3 » Log3 (16)

# Log 3 (16)

Log 3 (16) is the logarithm of 16 to the base 3:

## Calculator

log

Result:
As you can see in our log calculator, log3 (16) = 2.5237190142858.

## Calculate Log Base 3 of 16

To solve the equation log 3 (16) = x carry out the following steps.
1. Apply the change of base rule:
log a (x) = log b (x) / log b (a)
With b = 10:
log a (x) = log(x) / log(a)
2. Substitute the variables:
With x = 16, a = 3:
log 3 (16) = log(16) / log(3)
3. Evaluate the term:
log(16) / log(3)
= 1.39794000867204 / 1.92427928606188
= 2.5237190142858
= Logarithm of 16 with base 3
Here’s the logarithm of 3 to the base 16.

• From the definition of logarithm b y = x ⇔ y = log b(x) follows that 3 2.5237190142858 = 16
• 3 2.5237190142858 = 16 is the exponential form of log3 (16)
• 3 is the logarithm base of log3 (16)
• 16 is the argument of log3 (16)
• 2.5237190142858 is the exponent or power of 3 2.5237190142858 = 16
BTW: Logarithmic equations have many uses in various contexts in science.

Frequently searched terms on our site include:

## FAQs

### What is the value of log3 16?

Log3 (16) = 2.5237190142858.

### How do you find the value of log 316?

Carry out the change of base logarithm operation.

### What does log 3 16 mean?

It means the logarithm of 16 with base 3.

### How do you solve log base 3 16?

Apply the change of base rule, substitute the variables, and evaluate the term.

### What is the log base 3 of 16?

The value is 2.5237190142858.

### How do you write log 3 16 in exponential form?

In exponential form is 3 2.5237190142858 = 16.

### What is log3 (16) equal to?

log base 3 of 16 = 2.5237190142858.

For further questions about the logarithm equation, common logarithms, the exponential function or the exponential equation fill in the form at the bottom.

## Summary

In conclusion, log base 3 of 16 = 2.5237190142858.

You now know everything about the logarithm with base 3, argument 16 and exponent 2.5237190142858.
Further information, particularly about the binary logarithm, natural logarithm and decadic logarithm can be located in our article logarithm.

Besides the types of logarithms, there, we also shed a light on the terms on the properties of logarithms and the logarithm function, just to name a few.
Thanks for visiting Log3 (16).

## Table

Our quick conversion table is easy to use:
log 3(x) Value
log 3(15.5)=2.4948201036856
log 3(15.51)=2.4954071654451
log 3(15.52)=2.4959938488213
log 3(15.53)=2.4965801543015
log 3(15.54)=2.4971660823724
log 3(15.55)=2.4977516335194
log 3(15.56)=2.4983368082272
log 3(15.57)=2.4989216069795
log 3(15.58)=2.499506030259
log 3(15.59)=2.5000900785477
log 3(15.6)=2.5006737523263
log 3(15.61)=2.501257052075
log 3(15.62)=2.5018399782727
log 3(15.63)=2.5024225313976
log 3(15.64)=2.503004711927
log 3(15.65)=2.5035865203371
log 3(15.66)=2.5041679571034
log 3(15.67)=2.5047490227002
log 3(15.68)=2.5053297176014
log 3(15.69)=2.5059100422794
log 3(15.7)=2.506489997206
log 3(15.71)=2.5070695828523
log 3(15.72)=2.507648799688
log 3(15.73)=2.5082276481823
log 3(15.74)=2.5088061288034
log 3(15.75)=2.5093842420185
log 3(15.76)=2.5099619882941
log 3(15.77)=2.5105393680956
log 3(15.78)=2.5111163818878
log 3(15.79)=2.5116930301343
log 3(15.8)=2.5122693132979
log 3(15.81)=2.5128452318408
log 3(15.82)=2.513420786224
log 3(15.83)=2.5139959769076
log 3(15.84)=2.5145708043512
log 3(15.85)=2.5151452690131
log 3(15.86)=2.5157193713511
log 3(15.87)=2.5162931118218
log 3(15.88)=2.5168664908811
log 3(15.89)=2.5174395089842
log 3(15.9)=2.5180121665851
log 3(15.91)=2.5185844641372
log 3(15.92)=2.5191564020929
log 3(15.93)=2.5197279809039
log 3(15.94)=2.520299201021
log 3(15.95)=2.520870062894
log 3(15.96)=2.5214405669719
log 3(15.97)=2.5220107137032
log 3(15.98)=2.522580503535
log 3(15.99)=2.523149936914
log 3(16)=2.5237190142858
log 3(16.01)=2.5242877360954
log 3(16.02)=2.5248561027868
log 3(16.03)=2.5254241148031
log 3(16.04)=2.5259917725868
log 3(16.05)=2.5265590765793
log 3(16.06)=2.5271260272216
log 3(16.07)=2.5276926249533
log 3(16.08)=2.5282588702136
log 3(16.09)=2.5288247634408
log 3(16.1)=2.5293903050723
log 3(16.11)=2.5299554955448
log 3(16.12)=2.530520335294
log 3(16.13)=2.5310848247549
log 3(16.14)=2.5316489643618
log 3(16.15)=2.5322127545481
log 3(16.16)=2.5327761957463
log 3(16.17)=2.5333392883882
log 3(16.18)=2.5339020329048
log 3(16.19)=2.5344644297263
log 3(16.2)=2.5350264792821
log 3(16.21)=2.5355881820007
log 3(16.22)=2.53614953831
log 3(16.23)=2.5367105486369
log 3(16.24)=2.5372712134077
log 3(16.25)=2.5378315330478
log 3(16.26)=2.5383915079819
log 3(16.27)=2.5389511386338
log 3(16.28)=2.5395104254266
log 3(16.29)=2.5400693687825
log 3(16.3)=2.5406279691233
log 3(16.31)=2.5411862268695
log 3(16.32)=2.5417441424411
log 3(16.33)=2.5423017162574
log 3(16.34)=2.5428589487367
log 3(16.35)=2.5434158402969
log 3(16.36)=2.5439723913546
log 3(16.37)=2.5445286023262
log 3(16.38)=2.5450844736269
log 3(16.39)=2.5456400056714
log 3(16.4)=2.5461951988735
log 3(16.41)=2.5467500536463
log 3(16.42)=2.5473045704022
log 3(16.43)=2.5478587495527
log 3(16.44)=2.5484125915087
log 3(16.45)=2.5489660966803
log 3(16.46)=2.5495192654768
log 3(16.47)=2.5500720983068
log 3(16.48)=2.5506245955782
log 3(16.49)=2.551176757698
log 3(16.5)=2.5517285850727
Scroll to Top