Home » Logarithms of 3 » Log3 (15)

# Log 3 (15)

Log 3 (15) is the logarithm of 15 to the base 3:

## Calculator

log

Result:
As you can see in our log calculator, log3 (15) = 2.4649735207179.

## Calculate Log Base 3 of 15

To solve the equation log 3 (15) = x carry out the following steps.
1. Apply the change of base rule:
log a (x) = log b (x) / log b (a)
With b = 10:
log a (x) = log(x) / log(a)
2. Substitute the variables:
With x = 15, a = 3:
log 3 (15) = log(15) / log(3)
3. Evaluate the term:
log(15) / log(3)
= 1.39794000867204 / 1.92427928606188
= 2.4649735207179
= Logarithm of 15 with base 3
Here’s the logarithm of 3 to the base 15.

• From the definition of logarithm b y = x ⇔ y = log b(x) follows that 3 2.4649735207179 = 15
• 3 2.4649735207179 = 15 is the exponential form of log3 (15)
• 3 is the logarithm base of log3 (15)
• 15 is the argument of log3 (15)
• 2.4649735207179 is the exponent or power of 3 2.4649735207179 = 15
BTW: Logarithmic equations have many uses in various contexts in science.

Frequently searched terms on our site include:

## FAQs

### What is the value of log3 15?

Log3 (15) = 2.4649735207179.

### How do you find the value of log 315?

Carry out the change of base logarithm operation.

### What does log 3 15 mean?

It means the logarithm of 15 with base 3.

### How do you solve log base 3 15?

Apply the change of base rule, substitute the variables, and evaluate the term.

### What is the log base 3 of 15?

The value is 2.4649735207179.

### How do you write log 3 15 in exponential form?

In exponential form is 3 2.4649735207179 = 15.

### What is log3 (15) equal to?

log base 3 of 15 = 2.4649735207179.

For further questions about the logarithm equation, common logarithms, the exponential function or the exponential equation fill in the form at the bottom.

## Summary

In conclusion, log base 3 of 15 = 2.4649735207179.

You now know everything about the logarithm with base 3, argument 15 and exponent 2.4649735207179.
Further information, particularly about the binary logarithm, natural logarithm and decadic logarithm can be located in our article logarithm.

Besides the types of logarithms, there, we also shed a light on the terms on the properties of logarithms and the logarithm function, just to name a few.
Thanks for visiting Log3 (15).

## Table

Our quick conversion table is easy to use:
log 3(x) Value
log 3(14.5)=2.4341149985392
log 3(14.51)=2.4347425333635
log 3(14.52)=2.4353696358524
log 3(14.53)=2.4359963066012
log 3(14.54)=2.4366225462039
log 3(14.55)=2.4372483552534
log 3(14.56)=2.4378737343413
log 3(14.57)=2.438498684058
log 3(14.58)=2.4391232049927
log 3(14.59)=2.4397472977334
log 3(14.6)=2.4403709628668
log 3(14.61)=2.4409942009785
log 3(14.62)=2.4416170126529
log 3(14.63)=2.4422393984732
log 3(14.64)=2.4428613590212
log 3(14.65)=2.4434828948778
log 3(14.66)=2.4441040066226
log 3(14.67)=2.4447246948339
log 3(14.68)=2.445344960089
log 3(14.69)=2.4459648029639
log 3(14.7)=2.4465842240335
log 3(14.71)=2.4472032238714
log 3(14.72)=2.4478218030502
log 3(14.73)=2.4484399621413
log 3(14.74)=2.4490577017148
log 3(14.75)=2.4496750223398
log 3(14.76)=2.4502919245841
log 3(14.77)=2.4509084090145
log 3(14.78)=2.4515244761964
log 3(14.79)=2.4521401266945
log 3(14.8)=2.4527553610718
log 3(14.81)=2.4533701798906
log 3(14.82)=2.4539845837119
log 3(14.83)=2.4545985730954
log 3(14.84)=2.4552121486
log 3(14.85)=2.4558253107833
log 3(14.86)=2.4564380602017
log 3(14.87)=2.4570503974105
log 3(14.88)=2.4576623229641
log 3(14.89)=2.4582738374154
log 3(14.9)=2.4588849413166
log 3(14.91)=2.4594956352185
log 3(14.92)=2.4601059196709
log 3(14.93)=2.4607157952224
log 3(14.94)=2.4613252624207
log 3(14.95)=2.4619343218122
log 3(14.96)=2.4625429739423
log 3(14.97)=2.4631512193553
log 3(14.98)=2.4637590585943
log 3(14.99)=2.4643664922015
log 3(15)=2.4649735207179
log 3(15.01)=2.4655801446835
log 3(15.02)=2.466186364637
log 3(15.03)=2.4667921811164
log 3(15.04)=2.4673975946583
log 3(15.05)=2.4680026057983
log 3(15.06)=2.468607215071
log 3(15.07)=2.46921142301
log 3(15.08)=2.4698152301476
log 3(15.09)=2.4704186370153
log 3(15.1)=2.4710216441435
log 3(15.11)=2.4716242520613
log 3(15.12)=2.472226461297
log 3(15.13)=2.4728282723779
log 3(15.14)=2.47342968583
log 3(15.15)=2.4740307021784
log 3(15.16)=2.4746313219472
log 3(15.17)=2.4752315456595
log 3(15.18)=2.4758313738371
log 3(15.19)=2.4764308070011
log 3(15.2)=2.4770298456714
log 3(15.21)=2.4776284903668
log 3(15.22)=2.4782267416053
log 3(15.23)=2.4788245999037
log 3(15.24)=2.4794220657779
log 3(15.25)=2.4800191397427
log 3(15.26)=2.4806158223118
log 3(15.27)=2.4812121139981
log 3(15.28)=2.4818080153135
log 3(15.29)=2.4824035267685
log 3(15.3)=2.4829986488732
log 3(15.31)=2.4835933821362
log 3(15.32)=2.4841877270653
log 3(15.33)=2.4847816841674
log 3(15.34)=2.4853752539482
log 3(15.35)=2.4859684369126
log 3(15.36)=2.4865612335643
log 3(15.37)=2.4871536444064
log 3(15.38)=2.4877456699405
log 3(15.39)=2.4883373106676
log 3(15.4)=2.4889285670876
log 3(15.41)=2.4895194396995
log 3(15.42)=2.4901099290012
log 3(15.43)=2.4907000354897
log 3(15.44)=2.491289759661
log 3(15.45)=2.4918791020103
log 3(15.46)=2.4924680630316
log 3(15.47)=2.493056643218
log 3(15.48)=2.4936448430618
log 3(15.49)=2.4942326630542
log 3(15.5)=2.4948201036856
log 3(15.51)=2.4954071654451
Scroll to Top