Home » Logarithms of 2 » Log2 (10)

# Log 2 (10)

Log 2 (10) is the logarithm of 10 to the base 2:

## Calculator

log

Result:
As you can see in our log calculator, log2 (10) = 3.3219280948874.

## Calculate Log Base 2 of 10

To solve the equation log 2 (10) = x carry out the following steps.
1. Apply the change of base rule:
log a (x) = log b (x) / log b (a)
With b = 10:
log a (x) = log(x) / log(a)
2. Substitute the variables:
With x = 10, a = 2:
log 2 (10) = log(10) / log(2)
3. Evaluate the term:
log(10) / log(2)
= 1.39794000867204 / 1.92427928606188
= 3.3219280948874
= Logarithm of 10 with base 2
Here’s the logarithm of 2 to the base 10.

• From the definition of logarithm b y = x ⇔ y = log b(x) follows that 2 3.3219280948874 = 10
• 2 3.3219280948874 = 10 is the exponential form of log2 (10)
• 2 is the logarithm base of log2 (10)
• 10 is the argument of log2 (10)
• 3.3219280948874 is the exponent or power of 2 3.3219280948874 = 10
BTW: Logarithmic equations have many uses in various contexts in science.

Frequently searched terms on our site include:

## FAQs

### What is the value of log2 10?

Log2 (10) = 3.3219280948874.

### How do you find the value of log 210?

Carry out the change of base logarithm operation.

### What does log 2 10 mean?

It means the logarithm of 10 with base 2.

### How do you solve log base 2 10?

Apply the change of base rule, substitute the variables, and evaluate the term.

### What is the log base 2 of 10?

The value is 3.3219280948874.

### How do you write log 2 10 in exponential form?

In exponential form is 2 3.3219280948874 = 10.

### What is log2 (10) equal to?

log base 2 of 10 = 3.3219280948874.

For further questions about the logarithm equation, common logarithms, the exponential function or the exponential equation fill in the form at the bottom.

## Summary

In conclusion, log base 2 of 10 = 3.3219280948874.

You now know everything about the logarithm with base 2, argument 10 and exponent 3.3219280948874.
Further information, particularly about the binary logarithm, natural logarithm and decadic logarithm can be located in our article logarithm.

Besides the types of logarithms, there, we also shed a light on the terms on the properties of logarithms and the logarithm function, just to name a few.
Thanks for visiting Log2 (10).

## Table

Our quick conversion table is easy to use:
log 2(x) Value
log 2(9.5)=3.2479275134436
log 2(9.51)=3.2494453410858
log 2(9.52)=3.2509615735332
log 2(9.53)=3.2524762141352
log 2(9.54)=3.2539892662308
log 2(9.55)=3.2555007331484
log 2(9.56)=3.257010618206
log 2(9.57)=3.2585189247113
log 2(9.58)=3.2600256559615
log 2(9.59)=3.2615308152434
log 2(9.6)=3.2630344058338
log 2(9.61)=3.264536430999
log 2(9.62)=3.2660368939953
log 2(9.63)=3.2675357980687
log 2(9.64)=3.2690331464552
log 2(9.65)=3.2705289423807
log 2(9.66)=3.272023189061
log 2(9.67)=3.2735158897021
log 2(9.68)=3.2750070474999
log 2(9.69)=3.2764966656404
log 2(9.7)=3.2779847472998
log 2(9.71)=3.2794712956445
log 2(9.72)=3.2809563138311
log 2(9.73)=3.2824398050064
log 2(9.74)=3.2839217723076
log 2(9.75)=3.2854022188622
log 2(9.76)=3.2868811477882
log 2(9.77)=3.2883585621937
log 2(9.78)=3.2898344651775
log 2(9.79)=3.291308859829
log 2(9.8)=3.2927817492278
log 2(9.81)=3.2942531364445
log 2(9.82)=3.29572302454
log 2(9.83)=3.2971914165659
log 2(9.84)=3.2986583155645
log 2(9.85)=3.300123724569
log 2(9.86)=3.3015876466032
log 2(9.87)=3.3030500846817
log 2(9.88)=3.30451104181
log 2(9.89)=3.3059705209844
log 2(9.9)=3.3074285251922
log 2(9.91)=3.3088850574118
log 2(9.92)=3.3103401206121
log 2(9.93)=3.3117937177536
log 2(9.94)=3.3132458517876
log 2(9.95)=3.3146965256563
log 2(9.96)=3.3161457422934
log 2(9.97)=3.3175935046235
log 2(9.98)=3.3190398155625
log 2(9.99)=3.3204846780177
log 2(10)=3.3219280948874
log 2(10.01)=3.3233700690613
log 2(10.02)=3.3248106034205
log 2(10.03)=3.3262497008375
log 2(10.04)=3.327687364176
log 2(10.05)=3.3291235962916
log 2(10.06)=3.3305584000308
log 2(10.07)=3.3319917782321
log 2(10.08)=3.3334237337252
log 2(10.09)=3.3348542693316
log 2(10.1)=3.3362833878644
log 2(10.11)=3.3377110921283
log 2(10.12)=3.3391373849196
log 2(10.13)=3.3405622690264
log 2(10.14)=3.3419857472286
log 2(10.15)=3.3434078222978
log 2(10.16)=3.3448284969974
log 2(10.17)=3.3462477740828
log 2(10.18)=3.347665656301
log 2(10.19)=3.3490821463911
log 2(10.2)=3.3504972470841
log 2(10.21)=3.3519109611031
log 2(10.22)=3.3533232911629
log 2(10.23)=3.3547342399706
log 2(10.24)=3.3561438102253
log 2(10.25)=3.3575520046181
log 2(10.26)=3.3589588258323
log 2(10.27)=3.3603642765435
log 2(10.28)=3.3617683594192
log 2(10.29)=3.3631710771192
log 2(10.3)=3.3645724322959
log 2(10.31)=3.3659724275934
log 2(10.32)=3.3673710656485
log 2(10.33)=3.3687683490903
log 2(10.34)=3.3701642805402
log 2(10.35)=3.371558862612
log 2(10.36)=3.3729520979118
log 2(10.37)=3.3743439890385
log 2(10.38)=3.3757345385832
log 2(10.39)=3.3771237491295
log 2(10.4)=3.3785116232537
log 2(10.41)=3.3798981635247
log 2(10.42)=3.3812833725038
log 2(10.43)=3.382667252745
log 2(10.44)=3.3840498067952
log 2(10.45)=3.3854310371935
log 2(10.46)=3.3868109464722
log 2(10.47)=3.3881895371561
log 2(10.48)=3.3895668117627
log 2(10.49)=3.3909427728025
log 2(10.5)=3.3923174227788
log 2(10.51)=3.3936907641875
Scroll to Top