Table of Contents
Calculator
log
Result:
Calculate Log Base 16 of 2
To solve the equation log 16 (2) = x carry out the following steps.- Apply the change of base rule: log a (x) = log b (x) / log b (a) With b = 10: log a (x) = log(x) / log(a)
- Substitute the variables: With x = 2, a = 16: log 16 (2) = log(2) / log(16)
- Evaluate the term: log(2) / log(16) = 1.39794000867204 / 1.92427928606188 = 0.25 = Logarithm of 2 with base 16
Additional Information
- From the definition of logarithm b y = x ⇔ y = log b(x) follows that 16 0.25 = 2
- 16 0.25 = 2 is the exponential form of log16 (2)
- 16 is the logarithm base of log16 (2)
- 2 is the argument of log16 (2)
- 0.25 is the exponent or power of 16 0.25 = 2
Frequently searched terms on our site include:
FAQs
What is the value of log16 2?
Log16 (2) = 0.25.
How do you find the value of log 162?
Carry out the change of base logarithm operation.
What does log 16 2 mean?
It means the logarithm of 2 with base 16.
How do you solve log base 16 2?
Apply the change of base rule, substitute the variables, and evaluate the term.
What is the log base 16 of 2?
The value is 0.25.
How do you write log 16 2 in exponential form?
In exponential form is 16 0.25 = 2.
What is log16 (2) equal to?
log base 16 of 2 = 0.25.
For further questions about the logarithm equation, common logarithms, the exponential function or the exponential equation fill in the form at the bottom.
Summary
In conclusion, log base 16 of 2 = 0.25.You now know everything about the logarithm with base 16, argument 2 and exponent 0.25.
Further information, particularly about the binary logarithm, natural logarithm and decadic logarithm can be located in our article logarithm.
Besides the types of logarithms, there, we also shed a light on the terms on the properties of logarithms and the logarithm function, just to name a few.
Thanks for visiting Log16 (2).
Table
Our quick conversion table is easy to use:log 16(x) | Value | |
---|---|---|
log 16(1.5) | = | 0.14624062518029 |
log 16(1.51) | = | 0.14863713738759 |
log 16(1.52) | = | 0.15101783091722 |
log 16(1.53) | = | 0.15338291322948 |
log 16(1.54) | = | 0.15573258773004 |
log 16(1.55) | = | 0.15806705387488 |
log 16(1.56) | = | 0.16038650727188 |
log 16(1.57) | = | 0.16269113977923 |
log 16(1.58) | = | 0.16498113960059 |
log 16(1.59) | = | 0.16725669137741 |
log 16(1.6) | = | 0.16951797627816 |
log 16(1.61) | = | 0.17176517208497 |
log 16(1.62) | = | 0.17399845327748 |
log 16(1.63) | = | 0.17621799111409 |
log 16(1.64) | = | 0.17842395371084 |
log 16(1.65) | = | 0.18061650611777 |
log 16(1.66) | = | 0.18279581039305 |
log 16(1.67) | = | 0.18496202567483 |
log 16(1.68) | = | 0.18711530825101 |
log 16(1.69) | = | 0.18925581162686 |
log 16(1.7) | = | 0.19138368659074 |
log 16(1.71) | = | 0.19349908127779 |
log 16(1.72) | = | 0.19560214123184 |
log 16(1.73) | = | 0.1976930094655 |
log 16(1.74) | = | 0.1997718265185 |
log 16(1.75) | = | 0.2018387305144 |
log 16(1.76) | = | 0.20389385721564 |
log 16(1.77) | = | 0.20593734007707 |
log 16(1.78) | = | 0.20796931029792 |
log 16(1.79) | = | 0.20998989687238 |
log 16(1.8) | = | 0.21199922663874 |
log 16(1.81) | = | 0.21399742432712 |
log 16(1.82) | = | 0.21598461260599 |
log 16(1.83) | = | 0.21796091212733 |
log 16(1.84) | = | 0.21992644157057 |
log 16(1.85) | = | 0.2218813176854 |
log 16(1.86) | = | 0.22382565533333 |
log 16(1.87) | = | 0.22575956752823 |
log 16(1.88) | = | 0.22768316547573 |
log 16(1.89) | = | 0.22959655861159 |
log 16(1.9) | = | 0.23149985463906 |
log 16(1.91) | = | 0.23339315956526 |
log 16(1.92) | = | 0.23527657773661 |
log 16(1.93) | = | 0.23715021187334 |
log 16(1.94) | = | 0.2390141631031 |
log 16(1.95) | = | 0.24086853099372 |
log 16(1.96) | = | 0.24271341358512 |
log 16(1.97) | = | 0.24454890742041 |
log 16(1.98) | = | 0.24637510757622 |
log 16(1.99) | = | 0.24819210769223 |
log 16(2) | = | 0.25 |
log 16(2.01) | = | 0.25179887535105 |
log 16(2.02) | = | 0.25358882324427 |
log 16(2.03) | = | 0.25536993185261 |
log 16(2.04) | = | 0.25714228804919 |
log 16(2.05) | = | 0.25890597743268 |
log 16(2.06) | = | 0.26066108435212 |
log 16(2.07) | = | 0.26240769193115 |
log 16(2.08) | = | 0.26414588209159 |
log 16(2.09) | = | 0.26587573557654 |
log 16(2.1) | = | 0.26759733197285 |
log 16(2.11) | = | 0.26931074973311 |
log 16(2.12) | = | 0.27101606619712 |
log 16(2.13) | = | 0.27271335761278 |
log 16(2.14) | = | 0.27440269915661 |
log 16(2.15) | = | 0.27608416495368 |
log 16(2.16) | = | 0.27775782809719 |
log 16(2.17) | = | 0.27942376066744 |
log 16(2.18) | = | 0.28108203375055 |
log 16(2.19) | = | 0.28273271745661 |
log 16(2.2) | = | 0.28437588093748 |
log 16(2.21) | = | 0.28601159240418 |
log 16(2.22) | = | 0.28763991914384 |
log 16(2.23) | = | 0.28926092753639 |
log 16(2.24) | = | 0.29087468307072 |
log 16(2.25) | = | 0.29248125036058 |
log 16(2.26) | = | 0.29408069316011 |
log 16(2.27) | = | 0.29567307437905 |
log 16(2.28) | = | 0.2972584560975 |
log 16(2.29) | = | 0.29883689958055 |
log 16(2.3) | = | 0.30040846529241 |
log 16(2.31) | = | 0.30197321291033 |
log 16(2.32) | = | 0.30353120133821 |
log 16(2.33) | = | 0.30508248871989 |
log 16(2.34) | = | 0.30662713245217 |
log 16(2.35) | = | 0.30816518919757 |
log 16(2.36) | = | 0.30969671489678 |
log 16(2.37) | = | 0.31122176478088 |
log 16(2.38) | = | 0.3127403933833 |
log 16(2.39) | = | 0.3142526545515 |
log 16(2.4) | = | 0.31575860145845 |
log 16(2.41) | = | 0.31725828661381 |
log 16(2.42) | = | 0.31875176187497 |
log 16(2.43) | = | 0.32023907845776 |
log 16(2.44) | = | 0.32172028694704 |
log 16(2.45) | = | 0.32319543730696 |
log 16(2.46) | = | 0.32466457889113 |
log 16(2.47) | = | 0.32612776045249 |
log 16(2.48) | = | 0.32758503015304 |
log 16(2.49) | = | 0.32903643557334 |
log 16(2.5) | = | 0.33048202372184 |
log 16(2.51) | = | 0.33192184104401 |