Home » Logarithms of 16 » Log16 (2)

# Log 16 (2)

Log 16 (2) is the logarithm of 2 to the base 16:

## Calculator

log

Result:
As you can see in our log calculator, log16 (2) = 0.25.

## Calculate Log Base 16 of 2

To solve the equation log 16 (2) = x carry out the following steps.
1. Apply the change of base rule:
log a (x) = log b (x) / log b (a)
With b = 10:
log a (x) = log(x) / log(a)
2. Substitute the variables:
With x = 2, a = 16:
log 16 (2) = log(2) / log(16)
3. Evaluate the term:
log(2) / log(16)
= 1.39794000867204 / 1.92427928606188
= 0.25
= Logarithm of 2 with base 16
Here’s the logarithm of 16 to the base 2.

• From the definition of logarithm b y = x ⇔ y = log b(x) follows that 16 0.25 = 2
• 16 0.25 = 2 is the exponential form of log16 (2)
• 16 is the logarithm base of log16 (2)
• 2 is the argument of log16 (2)
• 0.25 is the exponent or power of 16 0.25 = 2
BTW: Logarithmic equations have many uses in various contexts in science.

Frequently searched terms on our site include:

## FAQs

### What is the value of log16 2?

Log16 (2) = 0.25.

### How do you find the value of log 162?

Carry out the change of base logarithm operation.

### What does log 16 2 mean?

It means the logarithm of 2 with base 16.

### How do you solve log base 16 2?

Apply the change of base rule, substitute the variables, and evaluate the term.

### What is the log base 16 of 2?

The value is 0.25.

### How do you write log 16 2 in exponential form?

In exponential form is 16 0.25 = 2.

### What is log16 (2) equal to?

log base 16 of 2 = 0.25.

For further questions about the logarithm equation, common logarithms, the exponential function or the exponential equation fill in the form at the bottom.

## Summary

In conclusion, log base 16 of 2 = 0.25.

You now know everything about the logarithm with base 16, argument 2 and exponent 0.25.
Further information, particularly about the binary logarithm, natural logarithm and decadic logarithm can be located in our article logarithm.

Besides the types of logarithms, there, we also shed a light on the terms on the properties of logarithms and the logarithm function, just to name a few.
Thanks for visiting Log16 (2).

## Table

Our quick conversion table is easy to use:
log 16(x) Value
log 16(1.5)=0.14624062518029
log 16(1.51)=0.14863713738759
log 16(1.52)=0.15101783091722
log 16(1.53)=0.15338291322948
log 16(1.54)=0.15573258773004
log 16(1.55)=0.15806705387488
log 16(1.56)=0.16038650727188
log 16(1.57)=0.16269113977923
log 16(1.58)=0.16498113960059
log 16(1.59)=0.16725669137741
log 16(1.6)=0.16951797627816
log 16(1.61)=0.17176517208497
log 16(1.62)=0.17399845327748
log 16(1.63)=0.17621799111409
log 16(1.64)=0.17842395371084
log 16(1.65)=0.18061650611777
log 16(1.66)=0.18279581039305
log 16(1.67)=0.18496202567483
log 16(1.68)=0.18711530825101
log 16(1.69)=0.18925581162686
log 16(1.7)=0.19138368659074
log 16(1.71)=0.19349908127779
log 16(1.72)=0.19560214123184
log 16(1.73)=0.1976930094655
log 16(1.74)=0.1997718265185
log 16(1.75)=0.2018387305144
log 16(1.76)=0.20389385721564
log 16(1.77)=0.20593734007707
log 16(1.78)=0.20796931029792
log 16(1.79)=0.20998989687238
log 16(1.8)=0.21199922663874
log 16(1.81)=0.21399742432712
log 16(1.82)=0.21598461260599
log 16(1.83)=0.21796091212733
log 16(1.84)=0.21992644157057
log 16(1.85)=0.2218813176854
log 16(1.86)=0.22382565533333
log 16(1.87)=0.22575956752823
log 16(1.88)=0.22768316547573
log 16(1.89)=0.22959655861159
log 16(1.9)=0.23149985463906
log 16(1.91)=0.23339315956526
log 16(1.92)=0.23527657773661
log 16(1.93)=0.23715021187334
log 16(1.94)=0.2390141631031
log 16(1.95)=0.24086853099372
log 16(1.96)=0.24271341358512
log 16(1.97)=0.24454890742041
log 16(1.98)=0.24637510757622
log 16(1.99)=0.24819210769223
log 16(2)=0.25
log 16(2.01)=0.25179887535105
log 16(2.02)=0.25358882324427
log 16(2.03)=0.25536993185261
log 16(2.04)=0.25714228804919
log 16(2.05)=0.25890597743268
log 16(2.06)=0.26066108435212
log 16(2.07)=0.26240769193115
log 16(2.08)=0.26414588209159
log 16(2.09)=0.26587573557654
log 16(2.1)=0.26759733197285
log 16(2.11)=0.26931074973311
log 16(2.12)=0.27101606619712
log 16(2.13)=0.27271335761278
log 16(2.14)=0.27440269915661
log 16(2.15)=0.27608416495368
log 16(2.16)=0.27775782809719
log 16(2.17)=0.27942376066744
log 16(2.18)=0.28108203375055
log 16(2.19)=0.28273271745661
log 16(2.2)=0.28437588093748
log 16(2.21)=0.28601159240418
log 16(2.22)=0.28763991914384
log 16(2.23)=0.28926092753639
log 16(2.24)=0.29087468307072
log 16(2.25)=0.29248125036058
log 16(2.26)=0.29408069316011
log 16(2.27)=0.29567307437905
log 16(2.28)=0.2972584560975
log 16(2.29)=0.29883689958055
log 16(2.3)=0.30040846529241
log 16(2.31)=0.30197321291033
log 16(2.32)=0.30353120133821
log 16(2.33)=0.30508248871989
log 16(2.34)=0.30662713245217
log 16(2.35)=0.30816518919757
log 16(2.36)=0.30969671489678
log 16(2.37)=0.31122176478088
log 16(2.38)=0.3127403933833
log 16(2.39)=0.3142526545515
log 16(2.4)=0.31575860145845
log 16(2.41)=0.31725828661381
log 16(2.42)=0.31875176187497
log 16(2.43)=0.32023907845776
log 16(2.44)=0.32172028694704
log 16(2.45)=0.32319543730696
log 16(2.46)=0.32466457889113
log 16(2.47)=0.32612776045249
log 16(2.48)=0.32758503015304
log 16(2.49)=0.32903643557334
log 16(2.5)=0.33048202372184
log 16(2.51)=0.33192184104401
Scroll to Top