Home » Logarithms of 10 » Log10 (3)

# Log 10 (3)

Log 10 (3) is the logarithm of 3 to the base 10:

## Calculator

log

Result:
As you can see in our log calculator, log10 (3) = 0.47712125471966.

## Calculate Log Base 10 of 3

To solve the equation log 10 (3) = x carry out the following steps.
1. Apply the change of base rule:
log a (x) = log b (x) / log b (a)
With b = 10:
log a (x) = log(x) / log(a)
2. Substitute the variables:
With x = 3, a = 10:
log 10 (3) = log(3) / log(10)
3. Evaluate the term:
log(3) / log(10)
= 1.39794000867204 / 1.92427928606188
= 0.47712125471966
= Logarithm of 3 with base 10
Here’s the logarithm of 10 to the base 3.

• From the definition of logarithm b y = x ⇔ y = log b(x) follows that 10 0.47712125471966 = 3
• 10 0.47712125471966 = 3 is the exponential form of log10 (3)
• 10 is the logarithm base of log10 (3)
• 3 is the argument of log10 (3)
• 0.47712125471966 is the exponent or power of 10 0.47712125471966 = 3
BTW: Logarithmic equations have many uses in various contexts in science.

Frequently searched terms on our site include:

## FAQs

### What is the value of log10 3?

Log10 (3) = 0.47712125471966.

### How do you find the value of log 103?

Carry out the change of base logarithm operation.

### What does log 10 3 mean?

It means the logarithm of 3 with base 10.

### How do you solve log base 10 3?

Apply the change of base rule, substitute the variables, and evaluate the term.

### What is the log base 10 of 3?

The value is 0.47712125471966.

### How do you write log 10 3 in exponential form?

In exponential form is 10 0.47712125471966 = 3.

### What is log10 (3) equal to?

log base 10 of 3 = 0.47712125471966.

For further questions about the logarithm equation, common logarithms, the exponential function or the exponential equation fill in the form at the bottom.

## Summary

In conclusion, log base 10 of 3 = 0.47712125471966.

You now know everything about the logarithm with base 10, argument 3 and exponent 0.47712125471966.
Further information, particularly about the binary logarithm, natural logarithm and decadic logarithm can be located in our article logarithm.

Besides the types of logarithms, there, we also shed a light on the terms on the properties of logarithms and the logarithm function, just to name a few.
Thanks for visiting Log10 (3).

## Table

Our quick conversion table is easy to use:
log 10(x) Value
log 10(2.5)=0.39794000867204
log 10(2.51)=0.39967372148104
log 10(2.52)=0.40140054078154
log 10(2.53)=0.40312052117582
log 10(2.54)=0.40483371661994
log 10(2.55)=0.40654018043396
log 10(2.56)=0.40823996531185
log 10(2.57)=0.40993312333129
log 10(2.58)=0.41161970596323
log 10(2.59)=0.41329976408125
log 10(2.6)=0.41497334797082
log 10(2.61)=0.41664050733828
log 10(2.62)=0.41830129131975
log 10(2.63)=0.41995574848976
log 10(2.64)=0.42160392686983
log 10(2.65)=0.42324587393681
log 10(2.66)=0.42488163663107
log 10(2.67)=0.42651126136457
log 10(2.68)=0.42813479402879
log 10(2.69)=0.42975228000241
log 10(2.7)=0.43136376415899
log 10(2.71)=0.4329692908744
log 10(2.72)=0.4345689040342
log 10(2.73)=0.43616264704076
log 10(2.74)=0.43775056282039
log 10(2.75)=0.43933269383026
log 10(2.76)=0.44090908206522
log 10(2.77)=0.44247976906445
log 10(2.78)=0.44404479591808
log 10(2.79)=0.4456042032736
log 10(2.8)=0.44715803134222
log 10(2.81)=0.44870631990508
log 10(2.82)=0.45024910831936
log 10(2.83)=0.45178643552429
log 10(2.84)=0.45331834004704
log 10(2.85)=0.45484486000851
log 10(2.86)=0.45636603312904
log 10(2.87)=0.45788189673399
log 10(2.88)=0.45939248775923
log 10(2.89)=0.46089784275655
log 10(2.9)=0.46239799789895
log 10(2.91)=0.46389298898591
log 10(2.92)=0.46538285144842
log 10(2.93)=0.46686762035411
log 10(2.94)=0.46834733041216
log 10(2.95)=0.46982201597816
log 10(2.96)=0.47129171105894
log 10(2.97)=0.47275644931721
log 10(2.98)=0.47421626407625
log 10(2.99)=0.47567118832443
log 10(3)=0.47712125471966
log 10(3.01)=0.47856649559384
log 10(3.02)=0.48000694295715
log 10(3.03)=0.4814426285023
log 10(3.04)=0.48287358360875
log 10(3.05)=0.48429983934678
log 10(3.06)=0.48572142648158
log 10(3.07)=0.48713837547718
log 10(3.08)=0.48855071650044
log 10(3.09)=0.48995847942483
log 10(3.1)=0.49136169383427
log 10(3.11)=0.49276038902684
log 10(3.12)=0.49415459401844
log 10(3.13)=0.49554433754645
log 10(3.14)=0.49692964807321
log 10(3.15)=0.4983105537896
log 10(3.16)=0.4996870826184
log 10(3.17)=0.50105926221775
log 10(3.18)=0.50242711998443
log 10(3.19)=0.50379068305718
log 10(3.2)=0.5051499783199
log 10(3.21)=0.50650503240487
log 10(3.22)=0.50785587169583
log 10(3.23)=0.5092025223311
log 10(3.24)=0.51054501020661
log 10(3.25)=0.51188336097887
log 10(3.26)=0.51321760006794
log 10(3.27)=0.51454775266028
log 10(3.28)=0.51587384371168
log 10(3.29)=0.51719589794997
log 10(3.3)=0.51851393987789
log 10(3.31)=0.51982799377572
log 10(3.32)=0.52113808370403
log 10(3.33)=0.52244423350632
log 10(3.34)=0.52374646681156
log 10(3.35)=0.52504480703684
log 10(3.36)=0.52633927738984
log 10(3.37)=0.52762990087134
log 10(3.38)=0.52891670027765
log 10(3.39)=0.53019969820308
log 10(3.4)=0.53147891704225
log 10(3.41)=0.5327543789925
log 10(3.42)=0.53402610605613
log 10(3.43)=0.53529412004277
log 10(3.44)=0.53655844257153
log 10(3.45)=0.53781909507327
log 10(3.46)=0.53907609879277
log 10(3.47)=0.54032947479087
log 10(3.48)=0.54157924394658
log 10(3.49)=0.54282542695918
log 10(3.5)=0.54406804435027
log 10(3.51)=0.54530711646582
Scroll to Top